
Practice and Evidence of Scholarship of Teaching and Learning in Higher Education
Special Issue: Threshold Concepts and Conceptual Difficulty
Vol. 12, No.2 April 2017, pp. 333--351

333

In the liminal space: software design as a threshold skill

Lynda Thomas*1.
Computer Science

Aberystwyth University, UK
ltt@aber.ac.uk

Jonas Boustedt.

Faculty of Engineering and Sustainable Development
University of Gävle, Sweden

jbt@hig.se

Anna Eckerdal.
Department of Information Technology

Uppsala University, Sweden
Anna.Eckerdal@it.uu.se

Robert McCartney.

Department of Computer Science and Engineering
University of Connecticut, USA

Robert@engr.uconn.edu

Jan Erik Moström.
Department of Computing Science

Umeå University, Sweden
jem@cs.umu.se

Kate Sanders.

Mathematics and Computer Science Department
Rhode Island College, USA

ksanders@ric.edu

Carol Zander.
Computing & Software Systems

University of Washington Bothell, USA
zander@u.washington.edu

1 * Corresponding Author

ISSN 1750-8428 (online) www.community.dur.ac.uk/pestlhe.org.uk

 PESTLHE

http://www.community.dur.ac.uk/pestlhe.org.uk

Thomas, .Boustedt, Eckerdal, McCartney. Special Issue:
Moström, Sanders and Zander Threshold Concepts and Conceptual Difficulty

334

Abstract

In previous work we proposed the idea of ‘threshold skills’ as a complement to threshold

concepts. The definition of threshold concepts assumes that theoretical knowledge is

paramount: gaining the understanding of particular concepts irreversibly transforms the

learners. We noted, however, that mastering computing, like many disciplines, requires

learning a combination of concepts and skills, and we suggested that this required

further investigation.

In this paper we examine the activity of designing software as a possible example of

such a threshold skill. We looked at 35 software designs collected from students

nearing graduation in computing courses, and see many of the characteristics of

threshold skill and also of students being in liminal space. A close examination of the

students’ designs leads to some useful implications for teaching this fundamental

activity.

Keywords: Threshold concepts, Threshold skills, Professional education, Practice

Introduction

The theory of threshold concepts has been applied to computing by a number of

authors: Zander et al. (2008), Shinners-Kennedy (2008) and Sorva (2010) for example

(see Rountree and Rountree (2009) or Flanagan (2012) for more examples). These

papers have identified a number of potential threshold concepts, many having to do with

learning to program. However, one of the features of programming is that it requires skill

as well as conceptual understanding. Moreover, when we interviewed students about

learning concepts, they often discussed skill acquisition as an important (and difficult)

aspect of their learning. One of our interviewees pointed the way:

There’s just some aspects to (programming) that just seem to remain kind of mysterious to me at the

programming level. Not the concept level, not the theory level, not the technology level, but at the kind

of code nuts and bolts level ... I sense from our conversations that you (as a teacher) feel you have

more problem in getting the concepts across …

In the liminal space: software design as a threshold skill Special Issue April 2017

335

This student was explicitly telling us that we were looking for concepts, but that for her

the concepts were not the problem, the ‘doing’ was.

This led us to argue that in computing, and possibly other disciplines, skills as well as

concepts need to be considered as thresholds. We proposed in Sanders et al. (2012)

and Thomas et al. (2012) some characteristics for such threshold skills. These were

derived from threshold concepts, but manifested somewhat differently. We also noted

one new characteristic - the importance of practice. This discussion was based on an

empirical analysis of student interview data, which is described in detail in Boustedt et

al. (2007) and Sanders et al. (2012).

To understand threshold skills, it is necessary to understand what we mean by skills.

The following is the definition of skill from the Oxford English Dictionary Online (2016):

Capability of accomplishing something with precision and certainty;

practical knowledge in combination with ability; cleverness, expertness.

Also, an ability to perform a function, acquired or learnt with practice.

It is the second of these meanings: an ability to perform a function, acquired or learnt

with practice that we are using. This notion of skill aligns with Norman’s description of

“knowledge how”, or procedural knowledge, which he describes as “…difficult or

impossible to write down and difficult to teach. It is best taught by demonstration and

best learned by practice.” (Norman, 1990, p. 58) It has been observed (Norvig, 2001)

that programming a computer well, like other skills, requires a good deal of time and

practice. The key aspects of skills are that they relate to doing things, and that they are

learned and improved by practice.

Given this understanding of skill, we adapted the definition of threshold concept to skills,

and proposed that threshold skills are:

Transformative Mastering a threshold skill transforms what students can do – and

their vision of what they can do. It is empowering and, as a result, often accompanied

by an increase in confidence; contrasted with threshold concepts, where mastery

transforms how students see their discipline.

Thomas, .Boustedt, Eckerdal, McCartney. Special Issue:
Moström, Sanders and Zander Threshold Concepts and Conceptual Difficulty

336

Integrative Once a threshold skill is attained by applying it to one task, students see

other potential applications. Rather than unifying different concepts (as threshold

concepts can do), a threshold skill broadens the list of tasks students can perform or

enables them to perform them in a new way.

Troublesome Skills can be complex, demanding, and time-consuming to learn and

maintain. They may seem alien at first (like the linear, step by step thinking required

to debug a program). They may even be counter-intuitive.

Semi-irreversible Unlike threshold concepts, threshold skills degrade over time with

lack of use. They do not completely go away, however. Students who have acquired

a threshold skill stay transformed and know where the skill applies, but may need to

review or practice.

Associated with practice It is inherent in our definition of skill that it is “attained or

learnt through practice”, where practice is “repeated exercise in or performance … so

as to acquire or maintain proficiency.” (Oxford English Dictionary Online, 2016)

Without practice, skills are not acquired and when attempting to solve a problem or

perform a task, this may frustrate and discourage students in an immediate way that

failure to understand a concept might not.

Investigating Software design as a Threshold Skill

Software design is the phase of software development that takes a description of what

is to be built and creates a detailed description of how it should be built. Designers must

break a problem down into parts and describe solutions to those parts and how they will

fit together using diagrams and other computing language artefacts.

In the big picture, software design as a concept is straightforward for students. As

noted, the concept is to break a problem down into its components and describe how

they work together. As a concept, this is understandable. Computing students do this

kind of problem solving from the beginning of their curriculum so the nature of it is

familiar to them. But the ‘nuts and bolts’ of actually doing it, the skill of designing the

In the liminal space: software design as a threshold skill Special Issue April 2017

337

software, of coming up with reasonable parts and being able to describe the action of

the system is quite difficult for many students. When problems are small and not

complex, most students can grasp an overview of the system and its parts. But as

problems get larger and more complex, the threshold skill of designing software

becomes more challenging.

As a research group, we previously investigated the abilities of graduating students in

the field of software design. Computing students were asked to “design a super-alarm

clock that university students could use to manage their sleep patterns” (Eckerdal et al.

2006) (Loftus et al. 2011). In Eckerdal et al. (2006), we used inductive analysis and

came up with six categories for their solutions:

Nothing. The work had little or no intelligible content.

Restatement. These merely restated the problem requirements.

Skumtomte (meaning marshmallow fluff in Swedish). These added a small amount

to restating the task, but upon investigation the designs were shown to have no

substance.

First step. Designs included some significant work beyond the problem description.

Partial design. Designs provided an understandable description for each of the

parts and an overview of the system that illustrates the relationships between the

parts (although the work was incomplete or superficial).

Complete. Designs included an understandable overview with descriptions of the

parts that included responsibilities of each part and an outline of the explicit

communication between them.

We found few students gave ‘complete solutions’ or even a ‘partial design.’ More

students gave a ‘first step’ to the design, but more than half of the students restated the

problem, or added just a small amount to restating the task.

Thomas, .Boustedt, Eckerdal, McCartney. Special Issue:
Moström, Sanders and Zander Threshold Concepts and Conceptual Difficulty

338

By examining students’ designs, we are able to see both skill – what they do when

asked to design -- and something of what they understand of the concept of design.

Software design seemed like a likely possibility for a Threshold Skill, and in this paper

we discuss this from a further examination of what students say about design in

interviews, and also from examining, in detail, student software designs.

Methodology

We used two sets of data. The first set consists of early interviews asking students

about threshold concepts (see Boustedt et al. (2007) and Sanders et al. (2012) for

details). We re-examined the interviews looking for comments on software design and

then sought out data on skills rather than concepts. As researchers, we considered the

interview comments individually and then as a group.

For the more recent data set, we asked a group of graduating computing students to

design the ‘super-alarm clock’ problem, to produce a design that someone else could

work from. We collected the designs from 35 students who were taking a compulsory

year-long final year projects course. They had no warning of this exercise and although

they had an intensive education in computing, including software design courses, they

had no opportunity to prepare or review their skills.

We then analysed the designs individually and in groups. Using software engineering

concepts and influenced by Loftus et al. (2011), we created a spreadsheet that

corresponded to the categories: analysis, static design, dynamic design, and linkage.

After analysing the data along these lines, we compared the designs to one produced

by an expert, and then categorized all the designs with respect to understandings of the

design process that were exhibited. As a measure of overall quality we assigned each

design into one of the six categories outlined in Eckerdal et al. (2006), and restated

above. Figure 1 shows a comparison of results between this and the previous study, for

more detail see Thomas et al. (2014). A greater proportion gave designs of the top three

categories than had previously. We attribute the greater success of the students to a

fairly uniform and more thorough preparation.

In the liminal space: software design as a threshold skill Special Issue April 2017

339

Figure 1. Comparison of previous and current results – Eckerdal et al. 2006 vs.

 Thomas et al. 2014

In addition, in a time-consuming iterative process of reading and comparing the designs,

individual, decontextualized features were grouped and re-grouped until consensus was

reached on the critical aspects that differentiated the various ways students understood

the phenomenon of ‘produce a design’ (Thomas et al. (2014).)

Characteristics of Threshold Skill

We looked at each of the threshold skill characteristics outlined above, specifically in

relation to software design.

Transformative. This was investigated through examination of the interviews rather

than the designs. As one interviewee said “I now find myself looking at everyday things

and working out in my head how I would represent them … I will be queuing up at the

supermarket and am able to picture in my head how I would represent a checkout

system using object (oriented design). It has revolutionised the way I think about

computing”

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

nothing restate skumtomte first step partial complete

this study

previous

Thomas, .Boustedt, Eckerdal, McCartney. Special Issue:
Moström, Sanders and Zander Threshold Concepts and Conceptual Difficulty

340

Integrative. Producing a software design provides an opportunity for students to

demonstrate their analytic skills and their capacity for abstraction, both of which are

useful throughout computer science. One interviewee discusses seeing “the pattern”

and how he can “go home and figure it out if there’s a pattern to it.”

Troublesome. Students certainly find software design difficult. They must learn new

notation, diagrams, and terms AND problem solve. In the designs we examined, most

students missed some critical part, failed to link parts, or failed to use correct

professional language. An example can be seen in Figure 2, where a student made little

progress with the task: doodling and restating the problem. Figure 3, on the other hand,

shows a student beginning to use correct professional notation.

Semi-irreversible. The students had certainly been taught the notations and skills that

were expected in this exercise; but, if they did not exhibit them we cannot be sure

exactly why. Had they ever really mastered these skills, or had they forgotten them?

Most students seemed to recognise that a problem should be broken into parts (so that

skill may be irreversible), some were able to design the partial solutions, but few were

able to integrate these solutions back together to solve the whole problem.

Must be practiced. One interviewee acknowledges the importance of practice: “It took

a lot of just practicing and just repeating. It’s to the point where when you see it you

wouldn’t be kind of intimidated. You would already say, okay I know what I can do with

this.”

Liminal Space

It appears that software design does have the characteristics we previously identified for

a threshold skill. In addition, we noted some other characteristics of students in the

liminal space, namely: partial understanding, mimicry, and a failure to recognize the

boundaries of the field (McCartney et al. 2009).

In the liminal space: software design as a threshold skill Special Issue April 2017

341

Figure 2. Before the Threshold Skill

Thomas, .Boustedt, Eckerdal, McCartney. Special Issue:
Moström, Sanders and Zander Threshold Concepts and Conceptual Difficulty

342

 Figure 3. After the Threshold Skill

In the liminal space: software design as a threshold skill Special Issue April 2017

343

Partial Understanding (Partial Mastery)

When examining threshold concepts, we saw partial understanding. Students reported

instances where they believed that they could not explain a concept in the abstract, but

could nevertheless apply that concept at a concrete level. Sometimes the reverse was

true, that students had a theoretical understanding but could not apply it to a concrete

problem (Thomas et al. (2012).

In the software designs we saw partial ‘mastery’ rather than partial understanding. At

the weakest level, we saw students who did not demonstrate that a design involved

parts. Some students alluded to parts, but failed to find solutions for the parts. Some

students who identified parts to the problem, then failed to link the solutions to those

parts back together. And many students failed to use the Language of Computing

correctly. They had been taught formal diagrams and notation to communicate their

software design but either used it incorrectly or failed to use it at all. In this sense they

showed that they could perform some aspects of the desired skill but not others, akin to

being in a liminal space while acquiring the skill of software design.

Mimicry

Although students did not use the language of computing correctly, we found evidence

in the data of mimicry of that language. Doing a software design can involve using

certain commonly accepted artefacts in the analysis and solution to the problem. One of

the first artefacts that is often taught is ‘use case diagrams’ where the actors in the

problem are represented by stick figures and other symbols. The super-alarm clock

problem involves several actors. Some students drew a stick figure, but only one. We

interpret this as the students knew they were supposed to draw stick figures, but did not

fully master how these are used in the analysis. They rather mimicked the way they

believed a design should be done. Figure 4 below shows such an example. Here, the

problem is merely restated, and a stick figure added, which does not add anything to the

solution.

Thomas, .Boustedt, Eckerdal, McCartney. Special Issue:
Moström, Sanders and Zander Threshold Concepts and Conceptual Difficulty

344

Figure 4. A restatement showing mimicry

Mimicry is not necessarily something bad. When learning a skill like software design,

mimicry can be a constructive, and even necessary, way to start. Some of the best

designs in the second study included most of the artefacts the students had learnt in

their education. These good designs used the artefacts in the intended way: as a help in

the analysis and solution to the problem. The students had followed, and maybe to

some extent mimicked, what the teachers had taught them. Still, what was striking was

that the expert in the study, in contrast to the students, chose to use only one artefact –

but did it in a way that clearly and elegantly showed a solution to the problem and that

subsumed other artefacts. Box (2009) describes how experts of design may come to a

point where they have a loose relation to artefacts and processes. She describes their

approach as “a strategy of adapting and scaling a method with the intent to accurately

define the problem while sharing a vision of the project”. These experts do not slavishly

use the artefacts for the sake of a rule or convention, but rather adapt the method to the

problem. This requires however a good mastery of all parts involved in the design

process, how they relate to each other and how and where in the process they belong.

This is far beyond the level of the fragmented ability exhibited by many of the students

in our study. Mimicry can be a successful means for our students to become more

skilful in design, and eventually reach the holistic view characteristic of experts, but it is

not enough.

In the liminal space: software design as a threshold skill Special Issue April 2017

345

Design as a Boundary Marker

Some students produced what we would not consider software designs at all - failing to

observe the boundaries of the field. The design in Figure 5 is something that we might

expect from someone outside the field of computing. This is a rather sad result of 3

years of study in a field.

Figure 5. Outside the boundary

Threshold skills and students’ understandings of software design

In Thomas et al. (2014) we used a phenomenographic approach on the 35 designs to

come up with an outcome space with six understandings. For each category of

understanding demonstrated, the student produces a richer design and is closer to

mastery of the skill of designing software. As a student is going through the process of

acquiring the skill, transitioning from layman to expert, the student is experiencing the

liminal space. The categories were:

0. The design a layman might produce

1. A design with some formal notation

Thomas, .Boustedt, Eckerdal, McCartney. Special Issue:
Moström, Sanders and Zander Threshold Concepts and Conceptual Difficulty

346

2. A design that uses formal notations to express the static relationships among the

parts

3. A design that uses formal notation to express sequential (dynamic) information,

but does not relate that to the static system parts

4. A design that includes and relates multiple artefacts, both static and dynamic

5. A design that relaxes the notations and includes only essential artefacts (this

understanding was demonstrated by an expert in the discipline and is not

expected of undergraduate students)

Students producing artefacts that fall into category 0 or 1 exhibit little software design

skill. Some students produced designs that a layman might, such as the alarm clock in

Figure 5. Failing to observe the boundaries of the field, this student is far from the

threshold of designing software. The student who produced only a use-case diagram,

such as that in Figure 4, shows that they know there is a language of computing by

using some formal notation, but demonstrates little skill - essentially only restating the

problem characteristics.

Students producing Category 2 artefacts understand that design is about software. They

not only understand the concept that software has parts, but can demonstrate the skill

by using class or interaction diagrams to show the parts and their relationship to each

other. Category 3 artefacts take design a step further by showing some behaviour, but

the software components have not been clearly identified. Figure 6 shows an example

of system behaviour that does not, however, refer to the static components of the

system.

Understanding that a software system has parts is well-known for most undergraduate

students, but demonstrating how those parts work together is difficult. Students know

that software performs tasks, but relating the tasks, the dynamic nature of the system,

to the static parts is a challenging skill not easily acquired. Demonstrating Category 4

takes the skill of defining components while at the same time understanding how they

interact. The diagram of Figure 3 shows a Category 4 artefact.

In the liminal space: software design as a threshold skill Special Issue April 2017

347

Figure 6. Shows behaviour, dynamic information

We do not expect students to demonstrate Category 5. This is the domain of experts.

Once computing professionals have been working in the discipline for a significant

period of time, they acquire the understanding and skill to relax the formal notation.

They include both static (the parts) and dynamic notations (behaviour), but not always

as is taught formally in school. Yet their design is clear. They are able to succinctly

demonstrate good software design. This threshold skill comes with years of practice.

The computing professional has emerged from the liminal space an expert.

Implications for Teaching

We sought to elicit critical aspects that differentiated the various ways students

understood the instruction ‘produce a design’ in Thomas et al. (2014). In the designs we

were able to identify the following critical aspects and their implications for teaching.

Each critical aspect corresponds to acquiring and refining a skill:

Thomas, .Boustedt, Eckerdal, McCartney. Special Issue:
Moström, Sanders and Zander Threshold Concepts and Conceptual Difficulty

348

1. There is a Language of Computing that designs should use so that they can be used

to communicate between professionals. Some students have not discerned that there is

a special, formal language of computing. It is important to note the differences between

a layman's sense of design and a software design. Designs for the same problem

should be created using more and more artefacts of the language of computing. By

contrasting these designs, students may discern and see the purpose of the language.

2. Systems are made up of components. These components form the static structure of

the system. This is a common feature of problem solving and examples that students

are already familiar with can be discussed and compared with the use of general

problem solving skills like divide and conquer.

3. There has to be a way of indicating behaviour in a system. This seems to be a crucial

and difficult step for many students, particularly when they attempt to express it in

formal notation. Students need to be challenged on their designs – asked how does this

part actually work.

4. The static structures and the dynamic behaviour have to be integrated. This is where

we recognise that, as instructors, we need to emphasise why the use-case diagram

(Figure 4) is useful, and how it is not enough on its own. How each of the cases is going

to be solved by the design should be able to be evidenced through the notation. The

use-case diagram is a start but needs to be linked back into the actual design – or else

it is just mimicry.

Integrating static structures and dynamic behaviour is difficult. Students must be able to

discern the components of the system, while also seeing how they work together. The

skill to do this takes time and practice. While students cannot achieve expert status,

they can be given the opportunity to design systems of increasing complexity as they

progress through the curriculum.

In the liminal space: software design as a threshold skill Special Issue April 2017

349

Conclusions

‘Threshold skills’ have been proposed as a complement to threshold concepts (Thomas

et al. 2012, Sanders et al. 2012). In this paper we have investigated software design as

a possible threshold skill. We have seen that it displays many of the same

characteristics as a threshold concept, albeit with the slightly different focus that we

described as a threshold skill. It is troublesome, integrative, semi-irreversible and must

be practiced.

We used interviews which sought out threshold concepts and then extracted information

on software design and skills. Furthermore, we asked a group of graduating computing

students to ‘design a super-alarm clock that University students could use to manage

their sleep patterns’. By examining our students’ designs, we were able to see both skill

– what they do when asked to design - and something of what they understand of the

concept of design.

It appears that software design is a threshold skill in the terms we considered. Overall,

increased design skill is both transformative (it changes the students’ understandings of

what they can do) and integrative (the design for one program can be adapted and re-

used for another). In terms of reversibility, there may be an issue with granularity: parts

of the design process – fluency in computing language and software design notation

and building a solution from those parts is semi-reversible and may need refreshing. But

the ability to break down a problem into parts may be irreversible. From the comparison

of the results of this study with other studies that used less prepared students, students

improve with practice; yet software design continues to be troublesome and to serve as

a boundary marker in the computing field. While learning software design, students

exhibit characteristics of being in liminal space.

At the TC conference in Durham the point was made that it is not enough to discover

threshold concepts – that is only useful if it leads to developments in learning and

teaching. By conducting this analysis we have been led to consider what were the

critical parts of completing a software design and what are the implications for teaching

this difficult subject.

Thomas, .Boustedt, Eckerdal, McCartney. Special Issue:
Moström, Sanders and Zander Threshold Concepts and Conceptual Difficulty

350

References

Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders, K., & Zander, C. (2007).

Threshold concepts in computer science: do they exist and are they useful? In Proceedings of the

38th SIGCSE Technical Symposium on Computer Science Education,7-11 March 2007, pp. 504-508.

Covington, KY: USA

Box, I. (2009).Toward an understanding of the variation in approaches to analysis and design. Computer

Science Education, 19(2), 93–109.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., & Zander, C. (2006). Can graduating students

design software systems? In Proceedings of the 37th SIGCSE Technical Symposium on Computer

Science Education, 1-5 March 2006, pp. 403-407. Houston,TX: USA.

Flanagan, M.T. (2012). Threshold Concepts: Undergraduate Teaching, Postgraduate Training and

Professional Development: A short introduction and bibliography. Retrieved from

http://www.ee.ucl.ac.uk/~mflanaga/thresholds.html.

Loftus, C., Thomas, L., & Zander, C. (2011). Can graduating students design: revisited. In Proceedings of

the 42nd ACM Technical Symposium on Computer Science Education, 9-12 March 2011, pp. 105-

110. Dallas, TX: USA.

McCartney, R., Boustedt, J., Eckerdal, A., Moström, J. E., Sanders, K., Thomas, L., & Zander, C. (2009).

Liminal spaces and learning computing, European Journal of Engineering Education, 34(4), 383-391.

Norman, D. A. (1990). The Design of Everyday Things. Doubleday, New York.

Norvig, P. (2001). Teach Yourself Programming in Ten Years. Retrieved from http://norvig.com/21-

days.htm, September 28, 2014.

Oxford English Dictionary Online. (2016). Oxford University Press. http://www.oed.com/

Rountree, J., & Rountree, N. (2009). Issues Regarding Threshold Concepts in Computer Science. In

Proceedings of the Eleventh Australasian Conference on Computing Education, (ACE ’09), 19-23

January 2009, pp. 139-145. Wellington: New Zealand.

Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Thomas, L,. & Zander, C. (2012).

Threshold Concepts and Threshold Skills in Computing. In Proceedings of the ninth annual

international conference on international computing education research (ICER ’12), 9-11 September

2012, pp. 23-30. Auckland, New Zealand.

http://www.ee.ucl.ac.uk/~mflanaga/thresholds_authors.html#mccartney
http://www.ee.ucl.ac.uk/~mflanaga/thresholds_authors.html#boustedt
http://www.ee.ucl.ac.uk/~mflanaga/thresholds_authors.html#eckerdal
http://www.ee.ucl.ac.uk/~mflanaga/thresholds_authors.html#mostrom
http://www.ee.ucl.ac.uk/~mflanaga/thresholds_authors.html#sanders
http://www.ee.ucl.ac.uk/~mflanaga/thresholds_authors.html#thomas
http://www.ee.ucl.ac.uk/~mflanaga/thresholds_authors.html#zander
http://norvig.com/21-days.htm
http://norvig.com/21-days.htm

In the liminal space: software design as a threshold skill Special Issue April 2017

351

Shinners-Kennedy, D. (2008). The Everydayness of Threshold Concepts: State as an Example from

Computer Science. In R. Land, J. H. F. Meyer, & J. Smith (Eds.), Threshold Concepts within the

Disciplines, pp. 119-128. Sense Publishers, Rotterdam.

Sorva, J. 2010. Reflections on threshold concepts in computer programming and beyond. In Proceedings

of the 10th Koli Calling International Conference on Computing Education Research (Koli Calling '10),

28-31 October 2010, pp. 21-30. Koli: Finland.

Thomas, L., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Sanders, K., & Zander, C. (2012).

A Broader Threshold: including skills as well as concepts in computing education. In Threshold

Concepts: from personal practice to communities of practice. Proceedings of the National Academy’s

Sixth Annual Conference and the Fourth Biennial Threshold Concepts Conference, 27-29 June 2012.

Trinity College, Dublin: Ireland.

Thomas, L., Eckerdal, A., McCartney, R., Moström, J. E., Sanders, K., & Zander, C. (2014). Graduating

Students’ Designs – Through a Phenomenographic Lens. In Proceedings of the tenth annual

conference on international computing education research (ICER’14), 11-13 August 2014, pp.91-98.

Glasgow: U.K.

Zander, C., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., and Sanders, K.

(2008). Threshold concepts in computer science: a multi-national investigation. In R. Land, J. H. F.

Meyer, & J. Smith (Eds.), Threshold Concepts within the Disciplines, pp. 105-118. Rotterdam: Sense

Publishers

http://www.ee.ucl.ac.uk/~mflanaga/thresholds_authors.html#shinnerskennedy
http://www.ee.ucl.ac.uk/~mflanaga/thresholds_authors.html#thomas
http://www.ee.ucl.ac.uk/~mflanaga/thresholds_authors.html#boustedt
http://www.ee.ucl.ac.uk/~mflanaga/thresholds_authors.html#eckerdal
http://www.ee.ucl.ac.uk/~mflanaga/thresholds_authors.html#mostrom
http://www.ee.ucl.ac.uk/~mflanaga/thresholds_authors.html#zander

